赤げふの数学

数学・物理・微分の大学2年生 赤げふのBLOG

実数階フーリエ変換

こんばんは( *・ω・)ノ久しい更新です

先日、60ページくらいある進捗の数式全部書いたノート失くして心が枯れてます^^;

進捗を公開して、モチベ上げようと思います。

Fourier変換の微分作用素と諸公式の証明を目標に頑張ります(`・ω・´)ゞ

 

では開始。今回、Fourier変換\mathcal{F}の流儀は

\displaystyle \hat{g} (x)=\mathcal{F}・g(x)=\dfrac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixt} g(t)\ dt

と定める。逆変換は

 \hat{g} (-x)=\displaystyle \mathcal{F}^{-1}・g(x)=\dfrac{1}{\sqrt{2\pi}}\int^{\infty}_{-\infty} e^{ixt} g(t)\  dt

である。\mathcal{F}の作用には周期性があり

\mathcal{F}^{2} ・g(x)=g(-x)\mathcal{F}^{4}・g(x)=g(x)\mathcal{F}^{4}=1

となる。(後方2つは同じ意味)

実は今後見ていくように\mathcal{F}虚数単位iと同様の構造を持つ事が解析的にも表現論的にも判明します!!  本記事では\mathcal{F}\mathbb{Z}回作用を\mathbb{R}回まで拡張したものをwikiで見て、証明を自分で考えてみたので、載せようと思います。

 

[主定理] 以下がFourier変換の実数階作用を与える

\displaystyle \mathcal{F}_{\theta} ・g(x)=\sqrt{\frac{1-i\cot\theta}{2\pi}} e^{\frac{i}{2} x^{2}\cot \theta}\int_{\mathbb{R}} e^{\frac{i}{2} t^{2} \cot \theta-ixt\csc \theta} g(t) \ dt

 

 

\int_{\mathbb{R}}区間-\infty \rightarrow \infty,\infty \rightarrow -\infty両方の積分を考えていて、Fourier変換作用自体の持つ2価な性質を反映している。因子の\sqrt{\ }の持つ代数分岐が原因だが、計算の都合上、積分区間-\infty \rightarrow \infty\sqrt{\ }の値域は偏角(-\frac{\pi}{2} ,\frac{\pi}{2})で定めて置くことにする。

Fourier変換の拡張は幾らでも人為的に作れますが、後々見る微分作用素による表現論的解釈を考えると極めて自然な定義と唸るでしょう。以下特徴付け

 

[命題]

 

(i)特殊ケース   \mathcal{F}_0 =1,\mathcal{F}_{\frac{\pi}{2}}=\mathcal{F}

(ii)基本周期2\pi   \mathcal{F}_{2\pi+\theta}=\mathcal{F}_{\theta}

(iii)加法性   \mathcal{F}_{\alpha} \mathcal{F}_{\beta} = \mathcal{F}_{\alpha +\beta}

 

 

[証明]

[補題]Gauss積分 z\in \mathbb{C},a\in \mathbb{C}\backslash \mathbb{R}_{0-}

 \displaystyle \int_{-\infty}^{\infty} e^{-a(t-z)^{2}}\  dt=\sqrt{\dfrac{\pi}{a}}

 

(i)\mathcal{F}_0は発散してるので極限値で与える。

 \displaystyle \mathcal{F}_0 ・g(x)

 \displaystyle = \lim_{\alpha \rightarrow 0}\sqrt{\frac{1-i\cot \alpha}{2\pi }} e^{\frac{i}{2} x^{2}\cot \alpha}\int_{-\infty}^{\infty} e^{\frac{i}{2}t^{2} \cot \alpha -ixt \csc \alpha} g(t)\ dt

 \displaystyle = \lim_{\alpha \rightarrow 0}\sqrt{\frac{1-i\cot \alpha}{2\pi}} e^{\frac{i}{2} x^{2}\cot \alpha-\frac{i}{2} x^{2} \csc \alpha \sec\alpha}\int_{-\infty}^{\infty} e^{\frac{i}{2} \cot \alpha (t-x \sec \alpha)^{2}} g(t)\ dt

 \displaystyle = \lim_{k \rightarrow +\infty}\sqrt{\frac{1-ik(1+O(k^{-2}))}{2\pi}} e^{\frac{i}{4} x^{2}\frac{1}{k}(1+O(k^{-2}))} \int_{-\infty}^{\infty} e^{\frac{ik}{2}(1+O(k^{-2}) (t-x+O(k^{-2}))^{2}}g(t)dt

 \displaystyle = \lim_{k \rightarrow +\infty}\sqrt{\frac{1-ik}{2\pi}} \int_{-\infty}^{\infty} e^{\frac{i}{2} t^{2}}g(\frac{t}{\sqrt{k}}+x)d\dfrac{1}{\sqrt{k}}t

 \displaystyle =\sqrt{\dfrac{-i}{2\pi}}\sqrt{\dfrac{2\pi}{-i}} g(x)

=g(x)

 

\mathcal{F}_{\frac{\pi}{2}}=\mathcal{F} は容易に分かる。

 //

 

(ii) 定数関数g(x)=1 に作用させると

 

 \displaystyle \mathcal{F}_{\theta} ・g(x)=\sqrt{\dfrac{1-i \cot \theta}{2\pi i}} e^{\frac{i}{2} x^{2} \cot \theta}\int_{-\infty}^{\infty} e^{\frac{i}{2} t^{2} \cot \theta -ixt \csc \theta} \ dt

 \displaystyle =\sqrt{\dfrac{1-i \cot \theta}{2\pi }} e^{\frac{i}{2} x^{2} \tan \theta }\int_{-\infty}^{\infty} e^{\frac{i}{2}  \cot \theta (t- x\sec \theta)^{2}} \ dt

 \displaystyle =\sqrt{1+i \tan \theta}e^{-\frac{i}{2}x^{2} \tan \theta}

となる。この事から\mathcal{F}2\pi未満の周期性を持たない。

また、等式から周期2\pi\mathcal{F_{\theta+2\pi}}=\mathcal{F}_{\theta}は容易に分かる。

 //

 

(iii)本題であります。

K_{\alpha} (x,t)=\sqrt{\dfrac{1-i\cot \alpha}{2\pi}} e^{\frac{i}{2} (x^{2}+t^{2} )\cot \alpha -ixt \csc \alpha}と置く。

 \displaystyle \mathcal{F}_{\alpha} \mathcal{F}_{\beta} ・g(x)

 \displaystyle =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{\alpha} (x,u) K_{\beta } (u,v)g(v)\  du dv

 \displaystyle \mathcal{F}_{\alpha +\beta} ・g(x) 

 \displaystyle =\int_{-\infty}^{\infty} K_{\alpha +\beta} (x,t)g(t)\ dt

 

この2つから、

 \displaystyle \int_{-\infty}^{\infty} K_{\alpha} (x,u) K_{\beta} (u,t) \ du=K_{\alpha +\beta} (x,t) 

を示せば十分と分かる。

複素平面で考えれば1-i\cot \alpha ,1-i\cot \beta ,\dfrac{i}{\cot \alpha +\cot \beta }

は虚部が全て同符号となる事は無い。従って\cotの加法定理より

\sqrt{1-i\cot \alpha}\sqrt{1-i\cot \beta}\sqrt{\dfrac{i}{\cot \alpha +\cot \beta}i}

=\sqrt{\dfrac{1-i\cot\alpha- i\cot\beta -\cot \alpha \cot \beta }{\cot \alpha +\cot \beta}i}=\sqrt{1-i\cot (\alpha +\beta )}

と計算できる。従って

 \displaystyle \int_{\mathbb{R}} K_{\alpha} (x,u) K_{\beta} (u,t) \ du

 \displaystyle =\sqrt{\dfrac{1-i\cot \alpha}{2\pi}} \sqrt{\dfrac{1-i\cot \beta}{2\pi}}\int_{-\infty}^{\infty} \exp \left( \dfrac{i}{2} (x^{2}+u^{2})\cot \alpha-ixu\csc \alpha \right)

×\exp \left(\dfrac{i}{2}(u^{2}+t^{2})\cot \alpha -iut \csc \alpha \right) du 

  \displaystyle =\sqrt{\dfrac{1-i\cot \alpha}{2\pi}} \sqrt{\dfrac{1-i\cot \beta}{2\pi}}\exp \left( \dfrac{i}{2} (x^{2} \cot \alpha +t^{2} \cot \alpha \right)

 ×\displaystyle \int_{-\infty}^{\infty} \exp \left( \dfrac{i}{2} u^{2}( \cot \alpha+ \cot \beta ) -iu(x\cot \alpha+t\cot \beta \right)

 \displaystyle =\sqrt{\dfrac{1-i\cot \alpha}{2\pi}} \sqrt{\dfrac{1-i\cot \beta}{2\pi}}\exp \left( \dfrac{i}{2} (x^{2} \cot \alpha +t^{2} \cot \alpha ) \right)

  \displaystyle × \exp \left(-\dfrac{i}{2} x^2 \dfrac{(x\csc \alpha +t\csc \beta )^2}{\cot \alpha +\cot \beta} \right)\int_{-\infty}^{\infty} \exp \left(\dfrac{i}{2}  u^2 (\cot \alpha +\cot \beta ) \right) \ du

 \displaystyle =\sqrt{\dfrac{1-i\cot \alpha}{2\pi}} \sqrt{\dfrac{1-i\cot \beta}{2\pi}} \sqrt{\dfrac{2\pi i}{\cot \alpha +\cot \beta }}\exp \left( -ixt\dfrac{\csc \alpha \csc \beta}{\cot \alpha +\cot \beta} \right)

×\exp \left(\dfrac{i}{2} x^{2} \dfrac{\cot^2 \alpha +\cot \alpha \cot \beta -\csc^2 \alpha}{\cot \alpha +\cot \beta} +t^2 \dfrac{\cot^2 \beta+\cot\alpha\cot\beta-\csc^2\beta}{\cot\alpha+\cot\beta} \right)

 =\sqrt{\dfrac{1-i \cot (\alpha +\beta )}{2\pi}} \exp \left(\dfrac{i}{2} (x^2+t^2)\cot (\alpha+\beta)-ixt\csc(\alpha+\beta)\right)

K_{\alpha+\beta} (x,t)

//

(i)(ii)(iii)より主定理は証明された。

Q.E.D. 証明完了!(`・ ω・´)ゞ

 

積分形が与えられているので1日で自力で証明出来ましたが発見するのは難しいと思います。

任意の線形作用素は、超関数も許せば2変数関数(核関数)\Phi によって \displaystyle \int_{\alpha}^{\beta} \Phi (x,t)g(t) dtなる形に書けることが知られています(Scwartzの定理)

分数階フーリエ変換変換はMehler核という2次の指数関数\Phi =K_\theta (x,t)を用いて解析的に良い形で書けるわけです。

具体的な関数の作用について見ていきましょう。

[例]

 e^{iax^2+ibx+ic}に作用させるとGauss積分より

\mathcal{F}_{\theta} ・e^{iax^2+ibx+ic}

  \displaystyle =\sqrt{\dfrac{1-i\cot \theta}{2\pi}} e^{ic+\frac{i}{2}x^2\cot\theta}\int_{-\infty}^{\infty}e^{it^2(\frac{1}{2}\cot\theta+a)-tx(\cot\theta-b)}dt

 \displaystyle =\sqrt{\dfrac{1-i\cot \theta}{2\pi}}e^{-\dfrac{i}{2}\dfrac{(x\csc\theta-b)^2}{\cot\theta+2a}}\int_{-\infty}^{\infty}e^{it^2(\frac{1}{2}\cot\theta+a)}dt

=\sqrt{\dfrac{i+\cot\theta}{2a+\cot\theta}}e^{-\dfrac{ix^2}{2}\dfrac{2a\cot\theta+1}{2a+\cot\theta}}e^{i\dfrac{bx\csc\theta}{2a+\cot\theta}}e^{-\dfrac{i}{2}\dfrac{b^2}{2a+\cot\theta}+ic}

 a=0の場合を足しあげて

\mathcal{F}_{\theta} ・\cos \omega x=\sqrt{1+i\tan\theta}e^{-\dfrac{i}{2}(x^2+\omega^2)\tan\theta}\cos(\omega x\sec\theta)

\mathcal{F}_{\theta} ・\sin \omega x=\sqrt{1+i\tan\theta}e^{-\dfrac{i}{2}(x^2+\omega^2)\tan\theta}\sin(\omega x\sec\theta)

 

などなど。性質について探って行きましょ〜(証明は楽)

[性質]

\mathcal{F}_{\theta}・g(x)=g_{\theta} (x)等と書いておきます。

・線型性

 \displaystyle \mathcal{F}_{\theta}・(a g(x)+bh(x))=ag_{\theta} (x)+bh_{\theta}(x)

・逆変換

\mathcal{F}_{\theta}^{-1}=\mathcal{F}_{-\theta}

・可換

\mathcal{F}_{\alpha}・g_{\beta}(x) =\mathcal{F}_{\beta} ・g_{\alpha} (x)

・結合

(\mathcal{F}_{\alpha}\mathcal{F}_{\beta})・g_{\gamma} (x)=\mathcal{F}_{\alpha}(\mathcal{F}_{\beta}\mathcal{F}_{\gamma})・g(x)

・引数平行移動

\mathcal{F}_{\theta}・g(x+T)=e^{\frac{i}{2}T^2\cot\theta}e^{ixT\csc\theta}g_{\theta} (x+T\cos\theta)

・反転

\mathcal{F}_{\theta} ・g(-x)=g_{\theta} (-x)

・指数関数倍

 \mathcal{F}_{\theta} ・(e^{ikx}g(x))=e^{-\frac{i}{4}k^2\sin 2\theta}e^{ikx\cos\theta}g_{\theta} (x-k\sin\theta)

複素共役(実関数f)

f_{\theta}^* (x)=f_{-\theta} (x)

・Parseval等式
積分表示から、K_0 (x,t)=\delta (x-t)と書けるので
 \displaystyle \int_{-\infty}^{\infty} f_{\theta}^* (t)g_{\theta}(t)dt
 \displaystyle =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f^*(u)g(v)\int_{-\infty}^{\infty}K_{-\theta}(u,t)K_{\theta} (t,v)dtdudv
 \displaystyle =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} K_0 (u,v)f^*(u)g(v)dudv
 \displaystyle =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f^*(u)g(v)\delta(u-v)dudv
 \displaystyle =\int_{-\infty}^{\infty} f^*(t)g(t) dt

 \displaystyle \int_{-\infty}^{\infty} f_{\theta}^* (t)g_{\theta}(t)dt=\int_{-\infty}^{\infty} f^* (t)g(t)dt

まぁざっとこんなもんですかね。次の次の次の記事がきっと凄く面白い内容となるでしょう!

  ]

微分方程式の研究と悪あがき

こんばんは〜(が1番確率的に多いかな?)

y'^{2} -y''y =x^{-2}

が今自分の研究の中で重要な役割を果たすんですが、

全然性質が分からないorz

ということで悪足掻きをしています。

これはテータ関数版微分という概念を定義した際のlogの対応物になります

まずフツーの\logの現象を見ていきますね。

任意のn\in \mathbb{N}に対し\frac{d}{dx}^{-1} x^{n}=\frac{1}{n+1} x^{n+1}+\mathbb{C}が成立しますが、(積分定数全体が同値類の空間\mathbb{C}を張ると考えることします)

n=-1を代入すると\frac{x^{0}}{0}というワケノワカラナイ物が出来ますが、

実際は\log x+\mathbb{C}であるという事を高校で習います。

\logは性質が非常に豊潤ですが、テータ関数版微分\log(以後l関数)は

制約が厳しく、性質が限られていくことになります。

lの定義は微分方程式y'^{2} -y''y =x^{-2}の解とします。

まだ初期値は与えてない(というか関数が求まってないので決めかねる)ので自由度があります。

二階微分を含みますので、2次元の自由度があるように思っていますがどうなんでしょう。

1つ自由度は見つかってててlが定義方程式を満たすとき任意のa\in \mathbb{C}について

\left( \dfrac{d}{dx}l(ax) \right)^{2}-l(ax)\dfrac{d^{2}}{dx^{2}} l(ax)

=a^{2}(l'(ax)^{2}-l(ax)l''(ax))=a^{2}・(ax)^{-2}

=x^{-2}

ですので引数のスカラー倍はして良いことになります。

\log逆関数\expであり、微分に関して良い性質を持つのはよく知られています。

l逆関数gとしてみると最初の式から色々計算して

1+x\dfrac{g_{2}}{g_{1}}=\left( \dfrac{g_{1}}{g} \right)^{2}

とできます。ただし見やすさのためg_{1}はgの1階微分と書いてます

g=e^{h}と置くとh_{1}+x(h_2 +h_{1}^{2})=h_{1}^{3}となります。

 

導関数h_1が0ならx=0h_{2}=0程度しか分かりませんが。

 

lに話を戻すと、

l=0のときl_1 =\pm \dfrac{1}{x}が分かります

xについて同次なのでx=e^{t}と置換すれば

\left(\dfrac{dy}{dt}\right)^{2}+y\dfrac{dy}{dt} -y\dfrac{d^{2}y}{dx^{2}}=1

さらにp=\frac{dy}{dt}とし、

p^{2}+py-py\dfrac{dp}{dy}=1であります。

x=u^{-1}とすれば

\left(\dfrac{dy}{du}\right)^{2} -2yu\dfrac{dy}{du}-u^{2}\dfrac{dy}{du}=1

u\to 0\dfrac{dy}{du}=\pm 1よりs\to \inftyy=0

つまりx=0中心の円板領域を除けばyは有界であることが分かります。

x=0での挙動が1番重要ですが、\log程度という推測しか付きません。

desmosで検証したところ\cos(\log x)が1番近い関数とわかりました。

[問題]

関数fのp回合成をf^{p} (x)=\overbrace{f(f(\cdots f(}^{p}x) \cdots )と書く。

自然数pに対し複素数係数有理式f(x)f^{p}(x)=x...(0)となるものを求めよ,

 

 

御無沙汰です。久しぶりの更新です|*・ω・)チラッ

自作問題です

ある意味不十分な解答です(ごめんなさい)

 

[解答]

 

 

 


f^{p}(x)=xで右辺は\mathbb{C} \cup \{\infty \}全単射なので、f(x)も上全単射である。...(1)

 

f(x)は有理関数なので代数学の基本定理から

f(x)=\dfrac{h(x)}{g(x)}(ただし既約分数、h(x)\perp g(x))と因数分解できるが、

相異なる複素数u,vがあってh(u)=h(v)=0となるときfの単射性(1)に反するので

h(x)は1次式の冪である。同様にg(x)も1次式の冪。

ところでg(x),h(x)の一方が2次以上の式ならf(x)の値を固定したとき

xの方程式で相異なる解が2つ以上出るが、fの全射性(1)に反する。

よってg(x),h(x)は高々1次式。

 

まず1次式f(x)=ax+bと仮定して(0)から
f^{p}(x)=a^{p} x+b\sum_{k=1}^{p} a^{k}=xより
\zeta_{p}=e^{\frac{2\pi i}{p}}と置くと
(a,b)=(1,0),(\zeta_{p}^{k} ,t) (\forall t \in \mathbb{C},k=1,2,\cdots p-1)
f(x)=x,\zeta^{k}_{p} x+t (\forall t \in \mathbb{C},k=1,2,\cdots ,p-1) ...(2)

 

これを除くと

f(x)= c+\dfrac{b}{x-a}.  (b\neq 0 )と書ける。

このとき次の事実が成立する。ただしp>1 

 

あるtが存在してf(t)\neq t \cap f^{p}(t)=t\Leftrightarrow f^{p}(x)=x

 

(\Leftarrow )は自明。(\Rightarrow )は分母を払って

 f^{p}(x)=\dfrac{x+\alpha}{\beta x+\gamma}なる形に帰着できる。自由度は3なので

a,b,cを調整し\alpha =\beta =0\gamma=1に持ってければ勝ちです。

f(x)不動点について見ると、2次方程式から、高々2点の不動点が出る。

もし重解がある時、不動点は1つだけだがその点における微分係数は1になり、

結局2自由度分の情報が得られる。...(3)

あとは1点の情報f^{p}(t)=tを付加すればa,b,cを決定できるのでok

(3)の計算は、不動点zがz=c+\dfrac{b}{z-a}を満たすので解いて

z=\dfrac{a+c \pm \sqrt{(a-c)^{2}+4b}}{2}となる。重解の際-4b=(a-c)^{2}だが

f'(\dfrac{a+c}{2})=\dfrac{-4b}{(a-c)^{2}}=1

よって示された。

 

以上より、解は

f(x)=x,\zeta^{k}_{p} x+t (\forall t \in \mathbb{C},k=1,2,\cdots ,p-1)

f(x)=c+\dfrac{b}{x-a} であるt\in \mathbb{C}が存在してf^{p}(t)=t\cap f(t)\neq t

全単射であることが超強い条件だなという実感です。

 

 

最近ある研究の過程で次の微分方程式が出てきたんですが、

全く解けなくて1ヶ月以上苦しんでいます。

y'^{2}-y''y=x^{-2}

部分的な変形でも良いので何かお助けお願いします! 

特殊すぎる解ですが

\displaystyle y(x)=\lim_{h\to \infty} h+\dfrac{1}{h} \log x

という「「発散表示」」は見つけました。

xについて同次形なのでx=e^{t}と置換し、

更に微分次数下げを行って、p=\dfrac{dy}{dt}とすれば

p^{2}-py\left( \dfrac{dp}{dy}-1\right) =1

が得られます。

log味が強いのでx=0での冪級数法は通じないでしょう。

x=1とかでプログラムで計算できる方とかいらっしゃらないかな

 

フーリエ変換作用素を微分作用素で表現する公式!

(。・ω・)ノども〜

 

今日はフーリエ変換微分作用素から捉える事をやってみましょう。

本記事では沢山の流儀の中でフーリエ変換作用素\mathcal{F}

 \displaystyle  \mathcal{F} \ g (x):=\dfrac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} g(t)e^{-ixt} dt

で定義します。今日のメインディッシュを....

定理1  Fourier Tranceform&differential operator

\mathcal{F}=\exp \left(\dfrac{i\pi}{4} \left( \dfrac{d}{dx}-x\right) \left( \dfrac{d}{dx}+x \right) \right)

全然関係ないFourier変換と微分が結びつくインパクトが強い!

定理2

\exp \left(i\pi x\dfrac{d}{dx} \right)=\exp \left(\dfrac{i\pi}{2} \left( \dfrac{d}{dx}-x\right) \left( \dfrac{d}{dx}+x \right) \right)

定理3

 \displaystyle e^{i\pi \left( \frac{d^{2}}{dx^{2}}-x^{2}\right) } =-1

Eulerの等式に引けを取らない美しい等式でめっちゃ好きです!

 

参考文献は「数学の現在 \pi 」の第1講小林俊之さんのとこですね

この本は数学の諸分野を教授が紹介する感じで、情報多くて面白いです!

今回の定理の主張自体が他の文献やネットに無いので、

今回はその部分を埋め合わせるためにこの記事を書いた次第です

少し本で見た表示と違いますが変形しています。

 

フーリエ変換は色々流儀がある為結構めんどくさい....()

それでは証明に入って行きましょう

 

色々定義。

 諸定義。

\mathcal{D}=\dfrac{d}{dx}

\mathcal{A}=x-\mathcal{D}

h_0 (x)=e^{-\frac{x^2}{2}}

\forall n\in \mathbb{N}_0 ,h_{n+1} (x)=\mathcal{A}・h_n (x)

 

フーリエ変換作用素を作用させても

関数が定数倍しか変化しない固有関数について考えてみると、

Gauss積分から\mathcal{F} ・h_0 (x)=h_0 (x)である事が導かれます。

詳しくやると、割と有名な極座標への変換のメソッドで

 

\displaystyle (\int_{-\infty}^{\infty}e^{-x^{2}})^{2}

=\displaystyle \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2} -y^{2}} dxdy

=\displaystyle \int_{0}^{2\pi} \int_{0}^{\infty} re^{-r^{2}} drd\theta

=\displaystyle \pi \int_{0}^{\infty} re^{-r^{2}} dr

=\displaystyle \pi \int_{-\infty}^{0} e^{s} ds

=\pi

 

なので

 

\mathcal{F} ・h_0 (x)

=\displaystyle \dfrac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-\frac{1}{2}t^{2} +ixt ) dt

 =\displaystyle \dfrac{1}{\sqrt{2\pi}}e^{-\frac{1}{2} x^{2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(t-ix)^{2}} dt

 \displaystyle =\dfrac{1}{\sqrt{\pi}}e^{-\frac{1}{2} x^{2}} \int_{-\infty}^{\infty} e^{-t^{2}} dt

=e^{-\frac{1}{2} x^{2}} =h_0 (x)

 

という風に示されます。いえい!!

 

更に任意の整数kについて

\mathcal{F} ・h_k (x) =(-i)^{k} h_k (x)

 が成り立ちます。これを示す為に、

\mathcal{A} と \mathcal{F}の関係を調べます

任意の可積分(絶対値の\mathbb{R}上の積分値が有限な)関数gについて 

 

 \displaystyle \mathcal{FA}・g(x)

 \displaystyle =\mathcal{F} ・(xg(x)-g'(x))

 \displaystyle =\dfrac{1}{\sqrt{2\pi}}\left( \int_{-\infty}^{\infty} e^{-ixt} (tg(t)-g'(t)) dt \right)

 \displaystyle =\dfrac{1}{\sqrt{2\pi}}\left( i\dfrac{d}{dx}\int_{-\infty}^{\infty} e^{-ixt} g(t)dt-[ e^{-ixt}g(t)]_{-\infty}^{\infty} -ix\int_{-\infty}^{\infty} e^{-ixt} g(t)dt \right)

 \displaystyle =-i\left( x-\dfrac{d}{dx}\right)  × \dfrac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-ixt} g(t)dt

=-i\mathcal{AF}・ g(x)

 

つまり作用素の合成として

 

\mathcal{FA}=-i\mathcal{AF}

 

なる関係が成り立ちます。よって任意の正整数nについて

 

\mathcal{F} ・h_n (x)

=\mathcal{FA}^{n} ・h_0 (x)

=-i\mathcal{AFA}^{n-1} ・h_0 (x)

\cdots

=(-i)^{n}\mathcal{A}^{n} \mathcal{F} ・h_0 (x)

=(-i)^{n} \mathcal{A}^{n} ・h_0 (x)

(-i)^{n} h_n (x)

故に\mathcal{F} ・h_n (x)= (-i)^{n} h_n (x)

 

h_nフーリエ変換の固有関数と分かりました

定義式から任意の自然数nについて

e^{\frac{1}{2} x^{2}} h_n (x)はn次多項式と分かります。

なので複素平面上のある領域でテイラー展開可能である任意の関数は\{ h_n \}_{n=0}^{\infty} を基底とした\mathbb{C}線形空間の元であるから、

 \{ h_n \}_{n=0}^{\infty} に対して作用した結果が等しいなら

基底の構造から、定理1を示せます!!

h_n\mathcal{A} とh_0 (x)から作られるので

\mathcal{A} とh_0 (x)に対する作用の結果が等しいなら、

任意の関数に対して作用した結果が等しく作用素としての等号が成り立ちます。

 

それでは後半戦。

 

以前私のブログで

 

\mathcal{D}x-x\mathcal{D}=1

 

という公式をライプニッツ則から導きました。

akaghef.hateblo.jp

 これを用いて行きます。

 

作用素A、Bに対し

交換子括弧

ad(A)・B=[A,B]=AB-BA

随伴作用

Ad(A)・B=ABA^{-1}

反交換子

\{ A,B\} =AB+BA

 

と定義するとLie群とLie環の関係を考えると

任意の\lambda \in \mathbb{C} 、作用素Aに対し

\exp (\lambda ad(A) )=Ad( \exp (\lambda A))

となります。双線型と交代性を持つ作用素なので

[\mathcal{D},x] =1を用いると、

[ \mathcal{A} (\mathcal{D}+x),\mathcal{A} ]

=\mathcal{A}[\mathcal{D}+x,\mathcal{A}]

=\mathcal{A}[\mathcal{D},x]-[x,\mathcal{D}] )

=2\mathcal{A}

となることがわかるので、

 

A=\mathcal{A}(D+x)、\lambda=-\dfrac{ i\pi}{4}を代入して\mathcal{A}に作用させると

 Ad\left( \exp \left(-\dfrac{i\pi}{4} \mathcal{A} \left( \mathcal{D}+x \right) \right) \right)・\mathcal{A}

= \exp \left(-\dfrac{i\pi}{4} ad\left( \mathcal{A} \left( \mathcal{D}+x \right) \right) \right) ・\mathcal{A}

\displaystyle =\sum^{\infty}_{n=0}  \dfrac{1}{n!} \left(-\dfrac{i\pi}{4} \right)^{n} ad\left( \mathcal{A} \left( \mathcal{D}+x \right) \right)^{n} ・\mathcal{A}

 \displaystyle =\mathcal{A}+\sum_{n=1}^{\infty} \dfrac{1}{n!} \left(-\dfrac{i\pi}{4} \right)^{n-1}×\left(-\dfrac{i\pi}{2}\right) ad\left( \mathcal{A} \left( \mathcal{D}+x \right) \right)^{n-1} ・\mathcal{A}

=\cdots

 \displaystyle =\sum_{n=0}^{\infty}\dfrac{1}{n!} \left(-\dfrac{i\pi}{2}\right)^{n} \mathcal{A}

 \displaystyle =-i\mathcal{A}

 

よって

 

\exp \left(-\dfrac{i\pi}{4} \mathcal{A} \left(\mathcal{D}+x \right) \right) \mathcal{A}=-i\mathcal{A}\exp \left(-\dfrac{i\pi}{4} \mathcal{A} \left( \mathcal{D}+x \right) \right)

 

となります。また、

 

(\mathcal{D}+x)h_0 (x)

=-xe^{-\frac{1}{2} x^{2}} +xe^{-\frac{1}{2} x^{2}}

=0

 

ですので

 

 \displaystyle \exp \left(-\dfrac{i\pi}{4} \mathcal{A} \left( \mathcal{D}+x \right) \right) h_0 (x)

\displaystyle =h_0 (x)+\sum_{n=1}^{\infty} \left(-\dfrac{i\pi}{4}\right)^{n}   \left( \mathcal{A} \left( \mathcal{D}+x \right) \right)^{n} h_0 (x)

 =h_0 (x)

 

よって\mathcal{A} とh_0 (x)に対して作用した結果が等しい事が分かりました!!!

これで先程言ったように任意のh_nについて作用の結果が等しく、任意の関数について作用の結果が等しいので作用素の等号が成り立ちます

これで定理1は証明完了です!!!

 

\mathcal{F}=\exp \left(\dfrac{i\pi}{4} \left( \mathcal{D}-x\right) \left( \mathcal{D}+x \right) \right)

 

ところでフーリエ変換の作用には周期性がある事が知られています。すなわち

\mathcal{F}^{4} f(x)=f(x) 

が成立します。見ていきましょう。

 

計算してみると、nが偶数、奇数なら

それぞれh_nは偶関数、奇関数である事が分かります。

任意の関数gに対し複素数\{c_k \}_{k=0}^{\infty}があって

 \displaystyle g(x)= \sum_{n=0}^{\infty} c_n h_n (x)

と書けるのでこれを使って

 

\mathcal{F}^{2} ・g(x)

 \displaystyle =\sum_{n=0}^{\infty} c_n \mathcal{F}^{2} ・h_n (x)

 \displaystyle =\sum_{n=0}^{\infty} c_n (-1)^{n} h_n (x)

 \displaystyle =\sum_{n=0}^{\infty} c_n h_n (-x)

=g(-x) 

 

となるので、

 

\mathcal{F}^{2} g(x) =g(-x)

 

これはつまり2階フーリエ変換は「引数マイナス倍の作用素」と言えます。

ここでx\mathcal{D} x^{p} =px^{p}となる事から、\expとfテイラー展開して掛け合わせると

 \displaystyle a^{x\mathcal{D}} f(x)=f(ax)

と分かるので、定理2を導けました!

 

\mathcal{F}^{2} =e^{i\pi x\mathcal{D}}

 

また、直ちに

 

\mathcal{F}^{4}=1

 

これは、4回フーリエ変換すれば元に戻るってことですね。

 

が導かれます。定理1を使って書き換えると

 

 \displaystyle \exp (i\pi (\mathcal{D}-x)(\mathcal{D}+x) ) =1

さらに[ \mathcal{D} ,x] =1を使うと、

 

 \displaystyle \exp (i\pi (\mathcal{D}^{2}-x\mathcal{D}+\mathcal{D}x-x^{2}) ) =1

 \displaystyle \exp (i\pi (\mathcal{D}^{2}-x^{2} +1)) =1

より定理3が導かれました!!!

 

 \displaystyle \exp (\pi i(\mathcal{D}^{2}-x^{2} )) =-1

 e^{2\pi i (\mathcal{D}^{2}-x^{2})}

d( '-' )

 

この結果は多重化することも可能です。つまり

X=(x_1, x_2, \cdots x_n )\nabla =(\dfrac{\partial}{\partial x_1},\dfrac{\partial}{\partial x_2},\cdots ,\dfrac{\partial}{\partial x_n}) 

と置くと作用素A,B[A,B]=0ならば指数法則が成立し

e^{A}e^{B} =e^{A+B}となるので

 

e^{2\pi i (\nabla^{2} -X^{2} )}=1

 

内積\nabla^{2}ラプラシアンですがすごく美しい関係式です!

ところで、複素関数としてのフーリエ変換にはもう一種類\mathcal{F}'があり

 

 \mathcal{F}' f(x) =\displaystyle \int_{-\infty}^{\infty} f(t)e^{-2\pi i xt} dt

 

と変換されます。実は、先程の \displaystyle a^{x\mathcal{D}} f(x)=f(ax)

a=2\piを代入すると\mathcal{F}と\mathcal{F}'には

(2\pi )^{x\mathcal{D}} \sqrt{2\pi} \mathcal{F} =\mathcal{F}'

なる関係が成立します。[ \mathcal{D} ,x] =1を使うことで対称的に

 

 \displaystyle \mathcal{F}' =(2\pi )^{\frac{1}{2} \{ x,\mathcal{D}\} } \mathcal{F}

 

と書けました!

 

面白かったでしょうか

調和解析の1分野として分階数フーリエ変換が提案されています。

これは人工的な概念では無くtフーリエ変換は指数関数として

\mathcal{F}^{t}=\exp \left(\dfrac{i\pi t}{4} \left( \mathcal{D}-x\right) \left( \mathcal{D}+x \right) \right)

として書く事が出来るのが有用な概念として位置づけられる理由です。

フーリエ変換のq類似がありますが今回の表示とどう関わっているかよく分かってせん

よければ教えてください!

 

1階微分作用素expは熱核として研究されていますし、

実際にe^{a\mathcal{D}} f(x)=f(x+a)

が成り立ちます。しかし2階微分作用素の指数写像に関しては非自明な部分があり、

今回のこれは2階微分作用素の対称性の関係式Segal-Shale-Weil表現なんかと結びついています。行間埋めてみたので見てみてくだいさな

 

 

akaghef.hateblo.jp

 

 

では今日はこれにて〜(`・ω・´)ノ

Segal-Shale-Weil表現

 sl_2 \mathbb{C}のSegal-Shale-Weil表現を紹介しマース

微分作用素を用いた表現です〜

 

  D=\dfrac{d}{dx}とします。

H_+ =\dfrac{ix^2}{2\sqrt{2}}

H_- =\dfrac{iD^2}{2\sqrt{2}}

H_0 =\dfrac{Dx+xD}{4}

を考えると、

(1)[ H_+ ,H_-] =H_0

(2)  [ H_0,H_+] =H_+

(3) [ H_-,H_0] =H_-

が成立します。ここに、作用素の交換子の等号[\[ A,B\] =C]は任意の正則な関数fに対し

[ A,B]f=(AB-BA)f =Cf

である事です(AB写像の合成に注意)

量子力学で有名な恒等式

[ D,x] =1を以前証明しましたがそれを使うと(3)は

H_- =\dfrac{2xD+1}{4}

と書き換えられます。xDの作用で固有値nに対し固有関数x^nがあるので

(xD)x^{n} =nx^nとなります。

 

それでは(1)(2)(3)を証明してみましょう。

H_0 ,H_- ,H_+は線形作用素で、

正則な関数fは形式的に

 \displaystyle f(x)=\sum_{k=0}^{\infty} a_k x^{k}

と展開出来ますから、

それぞれの作用素をfに作用させた時、各自然数nに対しx^{n}がどう変化するかを見ていけば等号が証明できます。

まず(2)は簡単です。

[H_0 ,H_+]x^{n}

=(H_0 H_+ - H_+ H_0 )x^n

=(H_0 H_+ x^n - H_+ H_0 x^n

=H_0 \dfrac{ix^{n+2}}{2\sqrt{2}} -H_+ \dfrac{2n+1}{4} x^n

=\dfrac{i}{2\sqrt{2}} \dfrac{2n+5-2n-1}{4}x^{n+2}

=\dfrac{i}{2\sqrt{2}} x^2 x^n

=H_+ x^n

よしっ

次(3)

Dx^{n}=nx^{n-1}を使うだけです。

[ H_- ,H_0] x^n

=\dfrac{i}{2\sqrt{2}} n(n-1) \dfrac{2n+1}{4} x^{n-2} - \dfrac{2n-3}{4}\dfrac{i}{2\sqrt{2}} n(n-1)x^{n-2} 

=\dfrac{i}{2\sqrt{2}}n(n-1)x^{n-2}

=H_- x^{n}

うぇいっ 

最後(1)、

[ H_+ ,H_-] x^{n}

=H_+ \dfrac{i}{2\sqrt{2}} n(n-1)x^{n-2} - H_- \dfrac{i}{2\sqrt{2}} x^{n+2}

=(\dfrac{i}{2\sqrt{2}})^{2} (n(n-1)-(n+2)(n+1)) x^{n}

=\dfrac{2n+1}{4} x^{n}

=H_0 x^{n}

美しくて気持ちよくないですか???

(まぁi/2√2とかは調整したんですが)

2回微分のこのような関係式の存在自体が非自明で興味深いです。

詳しい話は小林俊之さんが「数学の現在 π」で語っております。

そしてこれが、フーリエ変換微分作用素による表示へと繋がっていくのです

美しすぎて感動しますた